International Journal of Engineering, Science and Mathematics

Vol. 8 Issue 1, January 2019,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

SOME CLASS OF ENTIRE DOUBLE SEQUENCE OF INTERVAL NUMBERS

S. Zion Chella Ruth *

	ABSTRACT
	In this paper, the new concept of class of entire sequence space of interval numbers is introduced. The different properties of sequence space like completeness,
KEYWORDS:	solidness,AB space,AK property and symmetric are
Banach space;	studied.
AB space;	
AK property;	Copyright © 2019 International Journals of
Sequence algebra.	Multidisciplinary Research Academy. All rights reserved.

Author correspondence:

Dr. S. Zion Chella Ruth

Assistant Professor of Mathematics,

Pope's college(Autonomous), Sawyerpuram, Tuticorin, Tamilnadu, India.

(Affliated to Manonmaniam Sundaranar University, Tirunelveli)

1. INTRODUCTION

Interval arithmetic was first suggested by Dwyer [5] in 1951. Development of interval arithmetic as a formal system and evidence of its value as a computational device was provided by Moore [10] in 1959 and Moore and Yang [11] 1962. Furthermore, Moore and others [12] have developed applications to differential equations.

Chiao in [8] introduced sequence of interval numbers and defined usual convergence of sequences of interval number. Sengönül and Eryilmax [13] in 2010 introduced and studied bounded and convergent sequence space of interval numbers and

International Journal of Engineering, Science and Mathematics http://www.ijesm.co.in, Email: ijesmj@gmail.com

showed that these spaces are complete metric space. Recently Esi [1],[2],[3] and [7] introduced some new type sequence spaces of interval numbers.

A set consisting of a closed interval of real numbers x such that $a \le x \le b$ is called an interval number. A real interval can also be considered as a set. Thus we can investigate some properties of interval numbers, for instance arithmetic properties or analysis properties. We denote the set of all real valued closed intervals by $I\Re$. Any elements of $I\Re$ is called closed interval and denoted by \bar{x} . That is $\bar{x} = \{x \in \Re : a \le x \le b\}$. An interval number \bar{x} is a closed subset of real numbers. Let x_l and x_r be be respectively first and last points of the interval number \bar{x} .

For $\bar{x}_1, \bar{x}_2 \in I\Re$, we define $\bar{x}_1 = \bar{x}_2$ if and only if $x_{1l} = x_{2l}$ and $x_{1r} = x_{2r}$

$$\bar{x}_1 + \bar{x}_2 = \{x \in \Re : x_{1l} + x_{2l} \le x \le x_{1r} + x_{2r}\}$$

$$\overline{x}_1 \times \overline{x}_2 = \{ x \in \Re : \min(x_{1l} x_{2l}, x_{1l} x_{2r}, x_{1r} x_{2l}, x_{1r} x_{2r}) \le x \le \max(x_{1l} x_{2l}, x_{1l} x_{2r}, x_{1r} x_{2l}, x_{1r} x_{2r}) \}$$

The set of all interval numbers $I\Re$ is a complete metric space defined by

$$d(\bar{x}_1, \bar{x}_2) = \max\{|\bar{x}_{1l} - \bar{x}_{2l}|, |\bar{x}_{1r} - \bar{x}_{2r}|\}$$

In the special case $\bar{x}_1 = [a, a]$ and $\bar{x}_2 = [b, b]$, we obtain usual metric of \Re .

Let us define transformation $f: N \times N \to \Re$, $k, l \to f(k, l) = \overline{x}_{k, l}$, then $\overline{x} = (\overline{x}_{k, l})$ is called double sequence of interval numbers. $\overline{x}_{k, l}$ is called k, l^{th} term of sequence $\overline{x} = (\overline{x}_{k, l})$ We denote by $\omega^2(IR)$ the set of all double sequence of interval numbers.

A sequence $\overline{x}=(\overline{x}_{k,l})$ of double sequence interval numbers is said to be convergent in the Pringsheim's sense or P-convergent to the interval number \overline{x}_0 if for each $\varepsilon>0$ there exists a positive integer k_0 such that $d(\overline{x}_{k,l},\overline{x}_0)<\varepsilon$ for all $k,l\geq k_0$.

A sequence $\bar{x}=(\bar{x}_{k,l})$ of double sequence of interval numbers is said to be double interval fundamental sequence if for every $\varepsilon>0$ there exists $k_0\in\mathbb{N}$ such that $d(\bar{x}_{k,l},\bar{x}_{m,n})<\varepsilon \quad \text{whenever } m,n,k,l>k_0 \ .$

Let $p = (p_{k,l})$ be a double sequence of positive real numbers.

An interval double sequence space $E^2(IR)$ is said to be solid if $\overline{y} = (\overline{y}_{k,l}) \in E^2(IR)$ whenever $|\overline{y}_{k,l}| \le |\overline{x}_{k,l}|$ for all $k,l \in \mathbb{N}$ and $\overline{x} = (\overline{x}_{k,l}) \in E^2(IR)$.

An interval double sequence space $E^2(IR)$ is said to be monotone if $E^2(IR)$ contains the canonical pre-image of all its step spaces.

A interval double sequence space $E^2(IR)$ is said to be sequence algebra if $\overline{x} \otimes \overline{y} = (\overline{x}_{k,l} \otimes \overline{y}_{k,l}) \in E^2(IR)$, whenever $\overline{x} = (\overline{x}_{k,l}) \in E^2(IR)$, $\overline{y} = (\overline{y}_{k,l}) \in E^2(IR)$.

Let us denote the space of all entire functions of interval numbers by $\Gamma^2(IR)$. For each fixed k,l we define the metric

$$\rho(\overline{x}_{k,l},\overline{y}_{k,l}) = \max\{\left|x_{k,l}^{f} - y_{k,l}^{f}\right|^{1/p_{k,l}}, \left|x_{k,l}^{r} - y_{k,l}^{r}\right|^{1/p_{k,l}}\} = \left[d(\overline{x}_{k,l},\overline{y}_{k,l})\right]^{1/p_{k,l}}$$

We define
$$\Gamma^2(IR)$$
 by $\Gamma^2(IR) = {\overline{x} = (\overline{x}_{k,l}) \in \omega^2(IR) : \lim_{k,l \to \infty} \rho(\overline{x}_{k,l}, \overline{0}) = 0}$

Throughout this paper, let $\lambda=(\lambda_{k,l})$ be a fixed double sequence of positive real numbers such that $\frac{\lambda_{k+1,l+1}}{\lambda_{k,l}} \to 1$ as $k,l \to \infty$ and $\lambda_{k,l} \neq 1$ for all k,l. The space $G^2_{\lambda^2}(\mathit{IR})$ is defined by

$$G_{\lambda^2}^2(IR) = \{ \overline{x} = (\overline{x}_{k,l}) : \sum_{k,l=1}^{\infty} \lambda_{k,l}^2 d(\overline{x}_{k,l}, \overline{0})^2 < \infty \}$$

Example: Let
$$\lambda = (\lambda_{k,l}) = (kl), k,l \in N \text{ and } \bar{x} = (\bar{x}_{k,l}) = ([\frac{1}{(kl)^4}, \frac{1}{(kl)^2}])$$

Then
$$\sum_{k,l=1}^{\infty} \lambda_{k,l}^{2} d(\bar{x}_{k,l}, \bar{0})^{2} = \sum_{k,l=1}^{\infty} \lambda_{k,l}^{2} \left[\max \left(\left| \frac{1}{(kl)^{4}} \right|, \left| \frac{1}{(lk)^{2}} \right| \right) \right]^{2}$$
$$= \sum_{k,l=1}^{\infty} (kl)^{2} \frac{1}{(kl)^{4}} = \sum_{k,l=1}^{\infty} \frac{1}{(kl)^{2}} < \infty \text{ . Hence } (\bar{x}_{k,l}) \text{ is in } G_{\lambda^{2}}^{2}(IR)$$

2. MAIN RESULTS:

Theorem 2.1. The sequence space $G_{\lambda^2}^2(IR)$ is a complete metric space with respect to the metric defined by $\overline{d}(\overline{x}, \overline{y}) = \sum_{k,l=1}^{\infty} \lambda_{k,l}^2 d(\overline{x}_{k,l}, \overline{y}_{k,l})^2$

Proof: Let (\bar{x}^n) be a Cauchy sequence in $G_{\lambda^2}^2(IR)$. Then for a given $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that

$$\overline{d}(\overline{x}^n, \overline{x}^m) < \varepsilon$$
 for all $n, m \ge n_0$

then
$$\sum_{k,l=1}^{\infty} \lambda_{k,l}^2 d(\bar{x}_{k,l}^n, \bar{x}_{k,l}^m)^2 < \varepsilon$$
 for all $n,m \ge n_0$

$$d(\overline{x}_{k,l}^{n}, \overline{x}_{k,l}^{m})^{2} \lambda_{k,l}^{2} < \varepsilon \text{ for all } n,m \ge n_{0}$$

$$d(\overline{x}_{k,l}^{n}, \overline{x}_{k,l}^{m})^{2} < \varepsilon / \lambda_{k,l}^{2} \text{ for all } n,m \ge n_{0} \text{ and for all } k,l \in \mathbb{N}$$

$$d(\overline{x}_{k,l}^{n}, \overline{x}_{k,l}^{m}) < \left(\frac{\varepsilon}{\lambda_{k,l}^{2}}\right)^{1/2} < \varepsilon \text{ for all } n,m \ge n_{0} \text{ and for all } k,l \in \mathbb{N}$$

This means that $(\bar{x}_{k,l}^{n})$ is a Cauchy double sequence in $I\!\!R$. Since $I\!\!R$ is a Banach space, $(\bar{x}_{k,l}^{n})$ is convergent. Now, let $\lim_{n \to \infty} \bar{x}_{k,l}^{n} = \bar{x}_{k,l}$ for each $k,l \in \mathbb{N}$

Taking limit as $m \to \infty$ in (2.2) we have $\sum_{k,l=1}^{\infty} \lambda_{k,l}^{2} d(\bar{x}_{k,l}^{n}, \bar{x})^{2} < \varepsilon$ for all $n \ge n_{0}$. $\bar{d}(\bar{x}^{n}, \bar{x}) < \varepsilon$ for all $n \ge n_{0}$. Now for all $n \ge n_{0}$, $\bar{d}(\bar{x}, 0) \le \bar{d}(\bar{x}^{n}, \bar{x}) + \bar{d}(\bar{x}^{n}, 0) < \varepsilon + \infty = \infty$ Thus $\bar{x} = (\bar{x}_{k,l}) \in G_{\lambda^{2}}^{2}(IR)$ and so $G_{\lambda^{2}}^{2}(IR)$ is complete. This completes the proof.

Theorem 2.2. $G_{j^2}^2(IR)$ is a subset of $\Gamma^2(IR)$.

Proof: Let
$$\bar{x} = (\bar{x}_{k,l}) \in G_{\lambda^2}^2(IR)$$
, then $\sum_{k,l=1}^{\infty} \lambda_{k,l}^2 d(\bar{x}_{k,l}, \bar{0})^2 < \infty$

(2.3)

where
$$\frac{\lambda_{k+l,l+1}}{\lambda_{k,l}} \to 1$$
 as $k,l \to \infty$ and $\lambda_k,l \neq 1$ for all k,l

$$(2.4)$$

We claim that $[d(\overline{x}_{k,l},\overline{0})]^{1/p_{k,l}}$ converges to zero as $k,l\to\infty$.

From Equation (2.3)

$$\lambda_{k,l}^{2} d(\overline{x}_{k,l}, \overline{0})^{2} < \varepsilon^{2p_{k,l}} \text{ for all } k \in \mathbb{N}$$

$$\Rightarrow d(\overline{x}_{k,l}, \overline{0})^{2} < \varepsilon^{2p_{k,l}} / \lambda_{k,l}^{2}$$

$$\Rightarrow d(\overline{x}_{k,l}, \overline{0}) < \varepsilon^{p_{k,l}} / \lambda_{k,l}$$

$$\Rightarrow [d(\overline{x}_{k,l}, \overline{0})]^{1/p_{k,l}} < \varepsilon / \lambda_{k,l}^{1/p_{k,l}} < \varepsilon_{1} \text{ from (2.4)}$$

Hence $[d(\bar{x}_{k,l}, \bar{0})]^{1/p_{k,l}} \to 0$ as $k, l \to \infty$ and so $\bar{x} \in \Gamma^2(IR)$. Consequently, $G^2_{\lambda^2}(IR)$ is a subset of $\Gamma^2(IR)$.

Remark. $G_{\lambda^2}^2(IR)$ is a Banach space with norm

$$\|\overline{x}\|_{G_{\lambda^2}^i} = \{\sum_{k,l=1}^{\infty} \lambda_{k,l}^2 [d(\overline{x}_{k,l},\overline{0})]^2\}^{1/2}$$

Theorem 2.3. If $G_{\lambda^2}^2(IR)$ and $G_{\mu^2}^2(IR)$ are two double sequences of interval numbers, then

$$G_{\lambda^2}^2(IR) = G_{\mu^2}^2(IR)$$
 if and only if $k_1 \le \frac{\lambda_{k,l}}{\mu_{k,l}} \le k_2$, where k_1 and k_2 are constants.

Proof: The sufficiency of the condition $k_1 \le \frac{\lambda_{k,l}}{\mu_{k,l}} \le k_2$

(2.5)

If
$$\lambda_{k,l} \le k_2 \mu_{k,l}$$
 then $\lambda_{k,l}^2 d(\bar{x}_{k,l}, \bar{0})]^2 \le k_2^2 \mu_{k,l}^2 d(\bar{x}_{k,l}, \bar{0})]^2$.

If
$$(\bar{x}_{k,l}) \in G_{\mu^2}^2(IR)$$
, $\sum_{k,l=1}^{\infty} \mu_{k,l}^2 d(\bar{x}_{k,l},\bar{0})^2 < \infty$

Therefore $\sum_{k,l=1}^{\infty} \lambda_{k,l}^2 d(\overline{x}_{k,l},\overline{0})^2 \leq \sum_{k,l=1}^{\infty} k_2^2 \mu_{k,l}^2 d(\overline{x}_{k,l},\overline{0})^2 < \infty$. This implies that

$$(\overline{x}_{k,l}) \in G^2_{\lambda^2}(IR)$$

Hence
$$G_{u^2}^2(IR) \subset G_{z^2}^2(IR)$$
 (2.6)

Similarly, if
$$k_1 \mu_{k,l} \le \lambda_{k,l}$$
 then $G_{\lambda^2}^2(IR) \subset G_{\mu^2}^2(IR)$ (2.7)

From (2.6) and (2.7),
$$G_{\lambda^2}^2(IR) = G_{\mu^2}^2(IR)$$

To prove the necessity of the condition, let us suppose that the condition is not satisfied. First consider the right hand side inequality of (2.3). Let $\frac{\lambda_{k,l}}{\mu_{k,l}} \to \infty$ as $k,l \to \infty$.

Then it has a subsequence $\frac{\lambda_{k_n,l_n}}{\mu_{k_n,l_n}} \to \infty$ $\frac{\lambda_{k_n}}{\mu_{k_n}} \to \infty$ as $k_n,l_n \to \infty$ in such a manner that

$$\frac{\lambda_{k_n,l_n}}{\mu_{k_n,l_n}} > n$$
 for the values n=1,2,.... and $k_1 < k_2 <$, $l_1 < l_2 <$

Now we shall define a sequence $(\bar{x}_{k,l})$ as follows

$$\overline{x}_{k,l} = \begin{cases} [0, \frac{1}{n \ \mu_{k,l}}] \text{ when } k = k_n, l = l_n \\ [0,0] \text{ when } k \neq k_n, l \neq l_n \end{cases}$$

Then
$$\sum_{k,l=1}^{\infty} \mu_{k,l}^2 d(\bar{x}_{k,l}, \bar{0})^2 = \sum_{n=1}^{\infty} \mu_{k_n,l_n}^2 d(\bar{x}_{k_n,l_n}, \bar{0})^2$$

$$=\sum_{n=1}^{\infty}\frac{\mu_{k_n,l_n}^2}{n^2\mu_{k_n,l_n}^2}=\sum_{n=1}^{\infty}\frac{1}{n^2}<\infty$$

Therefore $(\bar{x}_{k,l}) \in G^2_{u^2}(IR)$ (2.8)

But
$$\sum_{k,l=1}^{\infty} \lambda_{k,l}^2 d(\bar{x}_{k,l}, \bar{0})^2 = \sum_{n=1}^{\infty} \lambda_{k_n, l_n}^2 d(\bar{x}_{k_n, l_n}, \bar{0})^2$$

$$> \sum_{n=1}^{\infty} n^2 \mu_{k_n, l_n}^2 d(\bar{x}_{k_n, l_n}, \bar{0})^2 = \sum_{n=1}^{\infty} \frac{n^2 \mu_{k_n, l_n}}{n^2 \mu_{k_n, l_n}} = \infty$$

Thus
$$\sum_{k,l=1}^{\infty} \lambda_{k,l}^2 d(\bar{x}_{k,l}, \bar{0})^2 > \infty$$

Therefore
$$(\bar{x}_{k,l}) \notin G_{z^2}^2(IR)$$
 (2.9)

From (2.8) and (2.9) contradict (2.6)

Similarly, if the left hand side inequality of (2.5) is not satisfied, then we can contradict (2.7) by constructing a sequence of the above type.

Hence the condition $k_1 \le \frac{\lambda_{k,l}}{\mu_{k,l}} \le k_2$ is necessary and sufficient in order that

$$G_{\lambda^2}^2(IR) = G_{\mu^2}^2(IR)$$

Theorem 2.4. $G_{\lambda^2}^2(IR)$ is an AK space.

Proof: For each $(\overline{x}_{k,l}) \in G^2_{\ell^2}(IR)$, $\|(\overline{x}^{[n]}) - \overline{x}\| \to 0$ as $n \to \infty$. Hence $G^2_{\ell^2}(IR)$ has AK.

Theorem 2.5. $G_{\chi^2}^2(IR)$ has AB property.

Proof: It is enough to show that $G_{\chi^2}^2(IR)$ has monotone norm. Indeed for n<m and for

every
$$(\bar{x}_{k,l}) \in G^2_{\lambda^2}(IR)$$
, we have

$$\|(\overline{x}^{[n]})\|^{2} = \sum_{k,l=1}^{n} \lambda_{k,l}^{2} d(\overline{x}_{k,l}, \overline{0})^{2} < \sum_{k,l=1}^{m} \lambda_{k,l}^{2} d(\overline{x}_{k,l}, \overline{0})^{2} = \|(\overline{x}^{[m]})\|^{2}$$
$$\|(\overline{x}^{[n]})\| < \|(\overline{x}^{[m]})\|$$

Also $\{\|(\overline{x}^{[n]})\|$, $n=1,2,...\}$ is a monotonically increasing sequence of interval numbers bounded above by $\|\overline{x}\|_{G^2_{\lambda^2}(IR)}$. Hence $\|\overline{x}\|_{G^2_{\lambda^2}(IR)} = \lim_{n\to\infty} \|(\overline{x}^{[n]})\| = \sup_n \{\|(\overline{x}^{[n]})\|, n=1,2,...\}$. Thus $G^2_{\lambda^2}(IR)$ has monotone norm.

Theorem 2.6. The space $G_{\lambda^2}^2(IR)$ is solid.

Proof: Let $(\bar{x}_{k,l})$ and $(\bar{y}_{k,l})$ be two sequences such that $(\bar{x}_{k,l}) \in G_{k^2}^2(IR)$ and $d(\bar{y}_{k,l}, \bar{0}) \le d(\bar{x}_{k,l}, \bar{0})$ for all $k, l \in N$

Since
$$(\overline{x}_{k,l}) \in G_{\lambda^2}^2(IR)$$
, we have $\sum_{k,l=1}^{\infty} \lambda_{k,l}^2 d(\overline{x}_{k,l},\overline{0})^2 < \infty$

Also we have $\lambda_{k,l}^2 d(\overline{y}_{k,l},\overline{0})^2 \le \lambda_{k,l}^2 d(\overline{x}_{k,l},\overline{0})^2$

$$\sum_{k,l=1}^{\infty} \lambda_{k,l}^{2} d(\bar{y}_{k,l}, \bar{0})^{2} \leq \sum_{k,l=1}^{\infty} \lambda_{k,l}^{2} d(\bar{x}_{k,l}, \bar{0})^{2} < \infty$$

So $(\bar{y}_{k,l}) \in G_{\lambda^2}^2(IR)$. Therefore $G_{\lambda^2}^2(IR)$ is solid.

Theorem 2.7. The space $G_{\lambda^2}^2(IR)$ is symmetric.

Proof: Let $(\bar{x}_{k,l})$ be a sequence in $G_{\lambda^2}^2(IR)$. Then $\sum_{k,l=1}^{\infty} \lambda_{k,l}^2 d(\bar{x}_{k,l},\bar{0})^2 < \infty$. For $\varepsilon > 0$ there

exists
$$k, l = k_0(\varepsilon)$$
 such that
$$\sum_{k,l=1}^{\infty} \lambda_{k,l}^2 d(\overline{x}_{k,l}, \overline{0})^2 - \sum_{k,l \le k_0}^{\infty} \lambda_{k,l}^2 d(\overline{x}_{k,l}, \overline{0})^2 < \varepsilon$$
. Let $(\overline{y}_{k,l})$ be a

rearrangement of $(\bar{x}_{k,l})$ and k_1 be such that $\{\bar{x}_{k,l}: k, l \leq k_0\} \subseteq \{\bar{y}_{k,l}: k, l \leq k_1\}$

Then
$$\sum_{k,l=1}^{\infty} \lambda_{k,l}^2 d(\bar{y}_{k,l}, \bar{0})^2 - \sum_{k,l \leq k}^{\infty} \lambda_{k,l}^2 d(\bar{x}_{k,l}, \bar{0})^2 < \varepsilon$$
 and so $\sum_{k,l=1}^{\infty} \lambda_{k,l}^2 d(\bar{y}_{k,l}, \bar{0})^2 < \infty$

Hence $(\bar{y}_{k,l}) \in G_{\lambda^2}^2(I\!\!R)$ and $G_{\lambda^2}^2(I\!\!R)$ is symmetric.

Theorem 2.8. The space $G_{\lambda^2}^2(IR)$ is sequence algebra.

Proof: We consider the space $G_{\lambda^2}^2(IR)$. Let $(\bar{x}_{k,l})$ and $(\bar{y}_{k,l})$ be two sequences in $G_{\lambda^2}^2(IR)$ and $0 < \varepsilon < 1$. Then the result follows from the following inclusion relation.

$$\{k,l\in N: \overline{d}(\overline{x}_k,l\otimes \overline{y}_{k,l},\overline{0})\} \supseteq \{k,l\in N: \overline{d}(\overline{x}_{k,l},\overline{0})\} \cap \{k,l\in N: \overline{d}(\overline{y}_{k,l},\overline{0})\}$$

REFERENCES

- 1. Ayhan Esi, B.Hazarika, On Interval Valued Generalized Difference Classes Defined by Orlicz Function, Turkish Journal of Analysis and Number Theory, 1(1)(2013),48-53.
- Ayhan Esi, Double sequences of interval numbers defined by Orlicz functions,
 Acta Et Commentationes Universitatis Tartuensis De Mathematica, 17(1)(2013), 57-64.
- Ayhan Esi, B.Hazarika, Some ideal convergence of double Λ-interval number sequences defined by Orlicz Function, Global Journal of Mathematical Analysis, 1(3)(2013), 110-116.
- 4. Brown H.I., Entire methods of summation, Compositio Mathematica, tome 21,n°1(1969), 35-42.
- 5. Dwyer P.S., Linear Computation, New York, Wiley, (1951).
- 6. Dwyer P.S., Error of matrix computation, simultaneous equations and eigenvalues, National Bureu of Standarts ,Applied Mathematics Series,29(1953), 49-58.
- 7. Esi A., A new class of interval numbers, Journal of Qafqaz University, Mathematics and Computer science, 31(2011), 98-102.
- 8. Kuo-Ping, Chiao, Fundamental properties of interval vector max-norm, Tamsui Oxford Journal of Mathematics, 18(2)(2002), 219-233.
- 9. Markov S., Quasilinear spaces and their relation to vector spaces, Electronic Journal on Mathematics of Computation, 2(1)(2005).
- 10. Moore R.E., Automatic Error Analysis in Digital Computation, LSMD-48421, Lockheed Missiles and space Company, (1959).
- 11. Moore R.E. and Yang C.T., Interval Analysis I, LMSD-285875, Lockheed Missiles and space Company, (1962).
- Moore R.E. and Yang C.T., Theory of an interval algebra and its application to numeric analysis, RAAG Memories II, Gankutsu Bunken Fukeyu-kai, Tokyo, (1958).
- 13. Sengönül M. and Eryilmax A., On the sequence space of interval numbers, Thai Journal of Mathematics, 8(3)(2010), 503-510.