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  ABSTRACT 

 
 In this paper, the new concept of class of entire sequence 

space of interval numbers is introduced. The different 

properties of sequence space like completeness, 

solidness,AB space,AK property and symmetric are 

studied. 
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1. INTRODUCTION  

Interval arithmetic was first suggested by Dwyer [5] in 1951. Development of  

interval arithmetic as a formal system and evidence of its value as a computational device 

was provided by Moore [10] in 1959 and Moore and Yang [11] 1962. Furthermore, Moore 

and others [12] have developed applications to differential equations. 

 Chiao in [8] introduced sequence of interval numbers and defined usual 

convergence of sequences of interval number. Sengönül and Eryilmax [13] in 2010 

introduced and studied bounded and convergent sequence space of interval numbers and 
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showed that these spaces are complete metric space. Recently Esi [1],[2],[3] and [7] 

introduced some new type sequence spaces of interval numbers. 

 A set consisting of a closed interval of real numbers x such that axb is called an 

interval number. A real interval can also be considered as a set. Thus we can investigate 

some properties of interval numbers, for instance arithmetic properties or analysis 

properties. We denote the set  of all real valued closed intervals by I . Any elements of 

I   is called closed interval and denoted by x . That is }.:{ bxaxx  An interval 

number x is a closed subset of real numbers. Let rl xandx  be be respectively first and 

last points of the interval number x . 

For  Ixx 21, , we define 21 xx   if and only if rrll xxandxx 2121 
 

)}:{ 212121 rrll xxxxxxxx   

)},,,max(),,,min(:{ 212121212121212121 rrlrrlllrrlrrlll xxxxxxxxxxxxxxxxxxxx   

The set of all interval numbers I is a complete metric space defined by  

 },max{),( 212121 rrll xxxxxxd   

In the special case ],[1 aax  and ],[2 bbx  ,we obtain usual metric of  . 

Let us define transformation  NNf : , ),(, lkflk  = ,,lkx then )( ,lkxx 
 
is  

called double sequence of interval numbers. lkx , is called 
thlk, term of sequence 

)( ,lkxx 
.
 We denote by )(2 IR  the set of all double sequence of interval numbers. 

A sequence )( ,lkxx  of double sequence interval numbers is said to be 

convergent in the Pringsheim’s sense or P-convergent to the interval number 0x if for each 

 >0 there exists a positive integer 0k  such that ),( 0, xxd lk  for all 0, klk   .  

  A sequence )( ,lkxx  of double sequence of interval numbers is said to be double 

interval fundamental sequence if for every 0 there exists 0k such that 

),( ,, nmlk xxd   whenever 0,,, klknm   .     

Let )( ,lkpp 
 
be a double sequence of positive real numbers.                 

 An interval double sequence space )(2 IRE  is said to be solid if 

)()( 2

, IREyy lk  whenever lklk xy ,,   for all lk, N and )()( 2

, IRExx lk  . 
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 An interval double sequence space )(2 IRE  is said to be monotone if )(2 IRE

contains the canonical pre-image of all its step spaces. 

 A interval double sequence space )(2 IRE is said to be sequence algebra if 

)()( 2

,, IREyxyx lklk  , whenever )()( 2

, IRExx lk 
,

)()( 2

, IREyy lk 
 
. 

 Let  us denote the space of all entire functions of interval numbers by )(2 IR . For 

each fixed lk ,  we define the metric       

 lk
lklk p

lklk

p
r

lk

r

lk

p
f

lk

f

lklklk yxdyxyxyx ,
,, 1

,,

1

,,

1

,,,, )],([},max{),(   

We define )(2 IR  by }0)0,(lim:)()({)( ,
,

2

,

2 


lk
lk

lk xIRxxIR   

 Throughout this paper, let )( ,lk   be a fixed double sequence of positive real 

numbers such that 1
,

1,1




lk

lk




  as lk, and 1, lk  for all k,l. The space )(2

2 IRG


is 

defined by 

 })0,(:)({)(
1,

2

,

2

,,

2
2  



lk

lklklk xdxxIRG 


 

Example:  Let ])
)(

1
,

)(

1
([)(,),()(

24,,
klkl

xxandNlkkl lklk    

Then  

2

1,
24

2

,

1,

2

,

2

,
)(

1
,

)(

1
max)0,( 







 


























lk

lk

lk

lklk
lkkl

xd   

               






 1,
2

1,
4

2

)(

1

)(

1
)(

lklk klkl
kl . Hence )( ,lkx is in  )(2

2 IRG


 

 

 

2. MAIN RESULTS: 

Theorem 2.1.
 
  The sequence space )(2

2 IRG


 
is a complete metric space with respect to the 

metric defined by    





1,

2

,,

2

, ),(),(
lk

lklklk yxdyxd                        

(2.1) 

Proof:  Let )( nx be a Cauchy sequence in )(2
2 IRG


. Then for a given 0 there exists n0

N such that  

 ),( mn xxd   for all n,mn0 
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then  





1,

2

,,

2

, ),(
lk

m

lk

n

lklk xxd   for all n,mn0                   

(2.2) 

           
2

,

2

,, ),( lk

m

lk

n

lk xxd  for all n,mn0    

                   2

,

2

,, ),(
lk

m

lk

n

lk xxd


 for all n,mn0 and for all lk, N  

                     




















21

2

,

,, ),(
lk

m

lk

n

lk xxd for all n,mn0 and for all lk, N  

This means that )( ,

n

lkx is a Cauchy double sequence in I . Since I  is a Banach space ,

)( ,

n

lkx is convergent. Now , let 
lk

n

lk
n

xx ,,lim  for each lk, N  

Taking limit as m   in (2.2) we have 





1,

2

,

2

, ),(
lk

n

lklk xxd   for all nn0.                     

),( xxd n
 for all nn0. Now for all  nn0,   )0,(),()0,( nn xdxxdxd   

Thus )()( 2

, 2 IRGxx lk 
  and so )(2

2 IRG


 is complete. This completes the proof. 

Theorem 2.2.
 
  )(2

2 IRG


 is a subset of )(2 IR . 

Proof:   Let )()( 2

, 2 IRGxx lk 
  , then 



1,

2

,

2

, )0,(
lk

lklk xd                 

(2.3) 

where 1
,

1,1




lk

lk




  as lk, and 1, lk  for all lk ,     

 (2.4) 

We claim that  lkp

lkxd .1

, )]0,([ converges to zero as lk , . 

From  Equation (2.3)  

 lkp

lklk xd .22

,

2

, )0,(    for all Nk   

 
2

,

22

,
.)0,( lk

p

lk
lkxd   

 lk

p

lk
lkxd ,,

.)0,(   

 1

1

,

1

,
..)]0,([   lklk

p

lk

p

lkxd   from  (2.4) 

Hence 0)]0,([ .1

, lkp

lkxd  as lk ,  and so )(2 IRx  . Consequently ,  )(2
2 IRG
  is a 

subset of )(2 IR . 
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Remark.  )(2
2 IRG


is a Banach space with norm  

 
21

1,

2

,

2

, })]0,([{
2







lk

lklkG
xdx i 



 

Theorem 2.3. If  )(2
2 IRG


 and )(2
2 IRG

  are two double sequences of interval numbers, then 

)()( 22
22 IRGIRG


    if and only if   

2

,

,

1 kk
lk

lk





 , where   21 kandk  are constants. 

Proof:   The sufficiency of the condition  
2

,

,

1 kk
lk

lk





                      

(2.5) 

If   lklk k ,2,    then 
2

,

2

,

2

2

2

,

2

, )]0,()]0,( lklklklk xdkxd   .  

If  )()( 2

, 2 IRGx lk 
 , 



1,

2

,

2

, )0,(
lk

lklk xd  

Therefore  






 1,

2

,

2

,

2

2

1,

2

,

2

, )0,()0,(
lk

lklk

lk

lklk xdkxd  . This implies that  

)()( 2

, 2 IRGx lk 


. 

Hence  )()( 22
22 IRGIRG


                                          (2.6) 

Similarly, if   lklkk ,,1    then  )()( 22
22 IRGIRG


                                (2.7) 

From  (2.6)  and  (2.7) ,  )()( 22
22 IRGIRG


     

 To prove the necessity of the condition, let us suppose that the condition is not 

satisfied . First consider the right hand side inequality of (2.3). Let  lkas
lk

lk
,

,

,




.  

Then it has a subsequence 

nn

nn

lk

lk

,

,




 nn

k

k
lkas

n

n ,



 in such a manner that 

n

nn

nn

lk

lk


,

,




  for the values n=1,2,..... and .....21  kk , .....21  ll  

Now we shall define a sequence )( ,lkx as follows 

  












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llkkwhen

llkkwhen
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1
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Then 









1

2

,

2

,

1,

2

,

2

, )0,()0,(
n

lklk

lk

lklk nnnn
xdxd    

                                           






 1
2

1
2

,

2

2

, 1

nn lk

lk

nn
nn

nn




 

Therefore )()( 2

, 2 IRGx lk 
             (2.8) 

But 









1

2

,

2

,

1,

2

,

2

, )0,()0,(
n

lklk

lk

lklk nnnn
xdxd   

                    






 1 ,

2

,

2

1

2

,

2

,

2 )0,(
n lk

lk

n

lklk

nn

nn

nnnn n

n
xdn




  

Thus 


1,

2

,

2

, )0,(
lk

lklk xd  

Therefore )()( 2

, 2 IRGx lk 
              (2.9) 

From  (2.8)  and  (2.9)  contradict (2.6) 

Similarly , if the left hand side inequality of (2.5) is not satisfied, then we can contradict 

(2.7) by constructing a sequence of the above type. 

Hence the condition  
2

,

,

1 kk
lk

lk





 is necessary and sufficient in order that 

)()( 22
22 IRGIRG


  

Theorem 2.4.  )(2
2 IRG


 is an AK space. 

Proof:  For each )()( 2

, 2 IRGx lk 
 ,   nasxx n 0)( ][ . Hence )(2

2 IRG


 has AK . 

Theorem 2.5.  )(2
2 IRG


 has AB property. 

Proof:  It is enough to show that )(2
2 IRG


 has monotone norm. Indeed for n<m and for 

every )()( 2

, 2 IRGx lk 
 , we have 

2
][

1,

2

,

2

,

1,

2

,

2

,

2
][ )()0,()0,()( m

m

lk

lklk

n

lk

lklk

n xxdxdx 


   

                      )()( ][][ mn xx   
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Also ,...}2,1,)({ ][ nx n  is a monotonically increasing sequence of interval numbers 

bounded above by 
)(2

2 IRG
x



. Hence ,...}2,1,)({sup)(lim ][][

)(2
2




nxxx n

n

n

nIRG


. Thus 

)(2
2 IRG


 has monotone norm. 

Theorem 2.6.  The space )(2
2 IRG


 is solid. 

Proof: Let )( ,lkx  and )( ,lky  be two sequences such that )()( 2

, 2 IRGx lk 
  and

)0,()0,( ,, lklk xdyd   for all Nlk ,  

Since )()( 2

, 2 IRGx lk 
  , we have 



1,

2

,

2

, )0,(
lk

lklk xd  

Also we have  
2

,

2

,

2

,

2

, )0,()0,( lklklklk xdyd    

                        






 1,

2

,

2

,

1,

2

,

2

, )0,()0,(
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lklk

lk

lklk xdyd   

So ).()( 2

, 2 IRGy lk 
  Therefore )(2

2 IRG


 is solid. 

Theorem 2.7.  The space )(2
2 IRG


 is symmetric. 

Proof:  Let )( ,lkx  be a sequence in )(2
2 IRG


. Then 


1,

2

,

2

, )0,(
lk

lklk xd .For 0 there 

exists )(, 0 klk   such that   






 0,

2

,

2

,

1,

2

,

2

, )0,()0,(
klk

lklk

lk

lklk xdxd . Let )( ,lky  be a 

rearrangement of )( ,lkx  and 1k be such that },:{},:{ 1,0, klkyklkx lklk   

Then   






 1,

2

,

2

,

1,

2

,

2

, )0,()0,(
klk

lklk

lk

lklk xdyd and so 


1,

2

,

2

, )0,(
lk

lklk yd  

Hence )()( 2

, 2 IRGy lk 
  and )(2

2 IRG


 is symmetric. 

Theorem 2.8. The space )(2
2 IRG


 is sequence algebra. 

Proof:  We consider the space )(2
2 IRG


. Let )( ,lkx  and )( ,lky  be two sequences in )(2
2 IRG


 

and 10  . Then the result follows from the following inclusion relation. 

             
     )0,(:,)0,(:,)0,,(:, ,,, lklklkk ydNlkxdNlkylxdNlk   
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